Sunday, September 30, 2012

4 Chambered Heart Anatomy and Physiology


Heart Anatomy
Source: http://www.yale.edu/imaging/echo_atlas/references/heart_anatomy.html

The purpose of the heart is to pump blood through blood vessels, arteries, and veins to all parts of our body. The inside of the heart is divided into four chambers
-The top two chambers are called the atria and are collection chambers for blood.
-The bottom two chambers are called the ventricles and receive blood from the atria and pump into the lungs and body.
-There are four valves, Tricuspid (right A-V) valve, Bicuspid (Left A-V or Mitral) valve, Pulmonary valve, and Aortic valve, which connect the chambers

How Does the Heart Work?
Circulation begins at the right side of the heart where blood from the body comes to the right atrium. The blood passes to the right ventricle through the tricuspid valve, in which the blood is pumped into the lungs through the pulmonary valve to receive oxygen.

The blood is delivered by the pulmonary arteriole to the lungs. In the lungs, the blood is oxygenated in the alveolar capillary network. After oxygenation, the blood is backed to the left atrium by Pulmonary venule.
Gas exchange in Lungs
Source: http://hyperphysics.phy-astr.gsu.edu/hbase/biology/respir.html
The oxygenated blood enters from two veins from the left lung and four veins from the right lung which merge into two before they enter the atrium.

From the left atrium, the oxygenated blood passes through the bicuspid valve into the left ventricle

From the left ventricle, oxygenated blood flows through the aortic valve into the aorta

Just superior to the valve, two arteries branch off to feed the heart. These are called the right and left coronary arteries. The coronary artery bifurcates to become the circumflex artery which feed the back of the heart. Deoxygenated blood is sent back to the coronary sinus into the right atrium to become reoxygenated in lungs.
Coronary Artery
Source: http://www.umm.edu/patiented/articles/coronary_artery_balloon_angioplasty_normal_anatomy_000127.htm

Beyond where the coronary arteries leave the aorta, three branches head off the aortic arch . One of these branches to supply the right arm and right carotid, one flows to the left carotid, and one supplies the left arm
Right Carotid
Source::http://www.umm.edu/patiented/articles/carotid_artery_surgery_normal_anatomy_000124.htm
Beyond the aortic arch, the aorta descends down behind the heart (descending aorta) where it eventually bifurcates into right and left illiac arteries which become femoral arteries.
Illiac Arteries
Source:http://www.jtmedart.com/Portfolio/12
Through this systematic circuit, arteries become smaller arterioles which become capillaries where Oxygen and Carbon dioxide are exchanged deoxygenated blood return through venules which turn into veins which return blood to the right atrium

Source: Lectured by Mr. Rick Ceriale. 

Dihybrid Cross

Useful Link:
http://www.siskiyous.edu/class/bio1/genetics/dihybrid_v2.html

Saturday, September 29, 2012

Acid and Base Definitions

Acid and Base are two important substances in Chemistry. Commonly, acid is classified as sour substances and base is bitter. Three scientists have defined acid and base and which improved the knowledge in Chemistry

  • Arrhenius Definition 
Acid: Anything produces Hydrogen Ion (H+) and dissolve in water 
Base: Anything produces Hydroxide Ion (OH-) and dissolve in water
Note: Dissociation is different from Solubility, for instance, Calcium Hydroxide is strong base, dissociate completely but slightly soluble. 
  • Brønsted–Lowry Definition 
Acid: Anything donates proton H+ to others
Base: Anything accepts proton H+ from others 

Acid and Base strength
Stronger Brønsted acid. Weaker conjugate base
Weaker Brønsted acid. Stronger conjugate base

For equilibrium reaction in weak acid and base 
All acid base reaction favor weak acid and weak base which means the reaction will shift toward the side of weaker acid or base. 

Important Terminology
Amphoterism: species of molecule or ion that can act as acid and base
Amphoprotic molecule: is the molecule that can donate and accept proton

Periodic Trends 

The strength of binary acid (H-X) 
The weaker the bond is, the stronger the acid is
The more electronegativity X is, the more polar the bond and the stronger the acid  
The more polar the H-X bond is, the stronger acid is.
The larger the atom is, the stronger the acid is. 

Figure 1a. Binary Acid Trends

The strength of Oxoacid (H-O-Y)
The greater the electronegativity of Y is, the stronger the acid is. 
(The more Oxygen in Y is, the more electronegavity is) 

Figure 1b. Oxoacid Trends
  • Lewis Definition
Acid: Any ion or molecule that can accept a pair of electrons in order to form a covalent bond.
Base: Any ion or molecule that can donate a pair of electrons in order to form a covelent bond.


MNEMONIC DEVICE: 
Arrhenius vs. Ions, 
Brønsted vs.Protons
Lewis vs. Electron pairs (Shape)  
Source:
Jespersen, Neil D. Chemistry The Molecular Nature of Matter. John Wiley & Sons. Inc. 2011. 
        (740- 766). Print


Thursday, September 27, 2012

Phylum Annelida/ Echiura/ Sipuncula

Phylum Annelida 
   Class Polychaeta 
   Class Clitellata
     Subclass Oligochaeta
     Subclass Hirudinae 
Common Annelids 
Lumbricus terrestris 
Hirudo medicinalis 
Chaetopterus variopedatus
Phylum Echiura
Phylum Sipuncula
Source: Professor Blake Barron's Lab Manual

Monday, September 24, 2012

Phylum Mollusca

Phylum Mollusca 
  Class Monoplacophora
  Class Polyplacophora
  Class Scaphopoda
  Class Bivalvia 
  Class Cephalopoda 
  Class Gastropoda 
    Subclass Pulmonata Terrestiral snail
    Subclass Prosobranchia Marine snail
    Subclass Opisthobranchia Marine slug
       Order Nudibranchia
          Suborder Doridacea no cerata
          Suborder Aeolidacea have cerata
Common Mollusca:
Helix sp.
Tegula sp. 
Norrisia sp.
Mopalia muscosa 
Hermissenda crassicornis
Loligo opalescens 
Octopus sp. 
Haliotis sp. 
Aplysia californica 
Source: Professor Blake Barron's Lab Manual

Thursday, September 20, 2012

Phylum Platyhelminthes / Nemertea/ Nematoda/ Rotifera

Phylum Platyhelminthes (Flatworms)

   Class Trematoda Ex: Flukes 
   Class Cestoda Ex: Tapeworm 
   Class Turbellaria Ex:Dugesia 
   Class Monogenea Ex: Polystoma 



Phylum Nemertea (Ribbon Worm)
Phylum Nematoda (Round Worm)
Phylum Rotifera (Rotifers) 


General Body Plan 

General Anatomy 
Anatomy of Dugesia or Planaria
Source: http://shsapbiop3-taxa.wikispaces.com/animalia-platyhelminthes

Anatomy of Rotifer
Source http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookdiversity_7.html

Life Cycles of Parasitic Worms 
Class Trematoda 
Clonorchis sinesis (Liver Fluke)
Shelled Embryo-->Miracidium-->SNAIL-->sporpcyst-->redia--> cercaria-->metacecaria in FISH's muscles --> HUMAN's liver
Source: http://bio390parasitology.blogspot.com/2012/02/immigrants-from-afar-clonorchis.html
Schistosoma mansoni (Blood Fluke)
Shelled Embryo-->Miracidium -->SNAIL-->sporocyst-->cercaria--> HUMAN's liver
Source: http://www.cab.unimelb.edu.au/cab_schisto.htm
Class Cestoda 
Taeniarhynchus saginatus (Beef's Tapeworm)
Shelled Embryo (in proglottid)--> consumed by cattle-->onchospheres in blood-->cysticercus (bladder worm) in beef muscle --> HUMAN's intestine
Source: http://www.esu.edu/~milewski/intro_biol_two/lab__10_platy_nemat/taenia_scolex.html
Class Nematoda 
Ascaris lubricoides (Intestine roundworm)
Shelled Embryo (in feces)--> Shelled larvae develop on soil--> shelled larvae ingested by humans with food or water--> larvae emerge in duodenum then enter blood stream--> in lung, move to trachea, esophagus--> HUMAN's intestine.
Source: http://bca.org/gallery/bioimages2010.html
Ancyclostoma duodenale (Hookworm)
Shelled Embryo (in feces)--> Larvae developed in soil--> Larvae grow-->larvae attach, penetrate skin, enter blood stream--> in lung,enter alveoli-->bronchi-->esophagus--> HUMAN's intestine.

Source: http://www.dpd.cdc.gov/dpdx/HTML/ImageLibrary/G-L/Hookworm/body_Hookworm_il2.htm
Enterobius vermicularis (Pinworm) 
In Human's intestine and cecum-> females migrate to anus at night--> deposited shelled embryos causes itching-->fingernails and clothing pick up shelled embryos--> reinfection of self. food, water, air, dust--> hatch in duodenum. 
Source: http://dailyparasite.blogspot.com/2010/06/june-10-syphacia-obvelata.html


Source: Blake Barron's Lab Manual
Useful Link: http://siera104.com/bio/flatworms.html

Sunday, September 16, 2012

Redox Reaction Balance Method

Ion-Electron Method in Acid Solution
1)  Identify the oxidation numbers of all oxidants and reductants
2)  Identify the Oxidants and Reductants
3) Write down the half reactions
4) Balance atoms other than H and O
5) Add H2O to balance O and Add H+ to balance H
6) Balance the number of electron on the half reactions by taking common factor
7) Add up the half reactions
8) Combine and Cancel similar terms
9) Check balance on atom and charges

Example 
Balance MnO4- + H2SO3--> SO42- + Mn2+
1) Oxidation # MnO4- = +7, S in H2SO3 = +4, S in SO42- = +6, Mn2+ = +2
2) Oxidant: MnO4- and Reductant  H2SO3 +
3)  MnO4- +5e -->  Mn2+
            H2SO3 --> SO42- +2e
4) No need to balance other atoms in this case
5) 8H+ + MnO4- +5e -->  Mn2+ + 4H2O
           H2O +  H2SO3 --> SO42- +2e + 4H+
6) (8H+ + MnO4- +5e -->  Mn2+ + 4H2O) x2
           (H2O +  H2SO--> SO42- +2e + 4H+x5
7) 16H+ + 2MnO4- +10e +5H2O +5H2SO3 --> 2Mn2+ + 8H2O + 5SO42- + 10e +20H+
(Cancel and Combine Highlighted similar terms)
8) 2MnO4- +5H2SO3 --> 2Mn2+ + 3H2O + 5SO42- + 4H+
9) Left hand side: 2Mn. 23O, 10H , net charge=-2
    Right hand side: 2Mn. 23O, 10H, net charge= +4 -10 +4= -2

Ion-Electron Method in Basic Solution
1)-9) the same as Acid Solution
10) Add OH- on both sides base on the H+ amount
11) Combine H+ and OH- into water/ Combine water molecule if possible
Example
Using same balanced equation
10) 4OH-+ 2MnO4- +5H2SO--> 2Mn2+ + 3H2O + 5SO42- + 4H+ + 4OH-
11) 4OH-+ 2MnO4- +5H2SO--> 2Mn2+ + 3H2O + 5SO42- + 4H2O (Combine water molecules)
       => 4OH-+ 2MnO4- +5H2SO--> 2Mn2+ + 7H2O + 5SO42-

Saturday, September 15, 2012

Phylum Cnidaria and Phylum Ctenophora

Kingdom Animalia 
  Subkingdom Eumetazoa
    Phylum Cnidaria
      Class Hydrozoa: Obelia, hydra, Physalia physalia, Vellela velella
       Class Cubozoa: Carybdea sp.
       Class Scyphozoa: Aurelia aurita
       Class Anthozoa
         Subclass Octocorallia: Lophogorgia chilensis, Renilla kollikeri
         Subclass Hexacorallia: Balanophyllia elegans, Anthopleura sola
         Subclass Ceriantipatharia: Pachyerianthus fimbriatus

     Phylum Ctenophora 
        Class Nuda: Beroe
        Class Tentaculata: Pleurobrachia bachii
       

Life cycle of Obelia 
Medusa--> Sperms/ Eggs--> Zygote-->Blastula--> Free-swimming planula larva--> Settles down to start new colony--> Obelia Colony
Source: http://wanderinweeta.blogspot.com/2011/10/obelia-and-very-messy-limpet.html
Life cycle of Aurelia
Medusa--> Sperms/Eggs--> Zygote--> Blastula--> Cilliated planula larva--> Scyphistoma-->Early Strobila-->Strobila-->Ephyra
Source: http://192.171.193.133/detail.php?sp=Aurelia

 Important terms and cell types
Cnidocytes, Diploblastic, Ectoderm, Endoderm

Source: Lab manual of Professor Blake Barron

Thursday, September 13, 2012

Taxa of Human

Domain Eukarya
  Kingdom Animalia
    Phylum Chordata
      Subphylum Vertebrata
         Superclass Gnathostomata
             Class Mammalia
                Subclass Theria
                   Infraclass Eutheria
                      Order Primates
                         Family Hominidae
                            Genus Homo
                               Species sapiens 
Source: Lab manual of Professor Blake Barron

Phylum Porifera

Kingdom Animalia
  Subkingdom Parazoa
       Phylum Porifera 
          Class Calcarea
          Class Demospongiae
          Class Hexactinellida 

Class Calcarea ~700species
Made of Calcium, protein
Number of spicules: 1,3,4 rays

Class Hexactinellida~500species
Made of Silica, protein
Number of spicules: 1,3,4, 6

Class Demospongiae ~7000species
Made of Silica, protein
Number of spicules 1,3,4

3 different Canal systems
Asconoida simple structure, the water flow in ostia to spongocoel and push out through osculum
Syconoid: a more advance system compare to Asconoid, it has many radial canals, which laid choanocytes and incurrent canals. These two kinds of canal are connected by the prosopyle (an opening). The water flow in osti
Leuconoid: The most complex canal systems.

Important cell types in Porifera:
Choanocytes, Pinacocytes, Porocytes, Amoebocytes, Archaeocytes.

Lectured by Professor Blake Barron

Tuesday, September 4, 2012

Malaria

Introduction: 
Malaria is caused by the plasmodium falciparum which under the phylum of Apicomplexa.

http://www.toursa.com/malaria_treatment.htm
Symptom:
Sudden coldness, followed by rigor, fever, sweat, headache, and coma.

Life Cycle 
1) An infected female mosquito delivers the parasites or sporozoites to human bloodstream through their saliva, which contains an anticoagulant that make steady blood flows.

2) Sporozoites are delivered to their target, liver. The sporozoites enter the liver cell and begin to grow. Meanwhile, the nucleus of the parasite divide constantly and at a certain point, it buds off and produce a thousand of Merozoites. The merozoites will enter the bloodstream under the circulatory system.

3) Merozoites reproduce in the red blood cells and burst out the infected cells

4) Some Merozoites develop into Gametocytes. The gametocytes enlarge into the oval structure with red blood cells.

5) In mosquito gut the gametocyte escape from erythrocytes and develop into gametes. The zygotes will be formed with two gametes (male and female)

6) The zygote matures into motile cell (ookinete), migrate to the guts of mosquito. In there, oocyst is formed and produce sporozoites which move to the salivary gland of mosquito.

For more in depth information, 
please visit http://www.sumanasinc.com/scienceinfocus/plasmodium/plasmodium.swf 

Sunday, September 2, 2012

Kingdom Protoctistans

Rhizopodans: 
Locomotion:
  Lobopodia, Filopodia  thin pseudopodia, that may branch but do not rejoin
Example: 
  Amoebas, Difflugia, Entamoeba
Granuloreticulosans:
Locomotion:
  Reticulopodia: thin pseudopodia, that branch and rejoin (like a network)
Example:
  Globigerina, Vertebralima
Actinopodans:
Locomotion:
  Axopodia (or Actinopodia): long slender pseudopodia)
Example:
  Actinophrys

Common phylum in Kingdom Protoctistans :
Phylum Chlorophyta
Unicellular or Multicelluar algae, Photosynthetic chlorophyll pigments
Example: Spirogyra, Ulva
Phylum Dinoflagellata
Typically with two flagella, one transverse, one trailing, chromoplasts bearing chlorophyll
Example: Ceratium, Noctiluca
Phylum Euglenozoa
Move with flagellum, bearing chloroplast and beta-carotene as an eyespot
Example: Euglena, Trypanosoma
Phylum Sarcomastigophora (Amobazoa)
Move with pseudopodia locomotion
Example: Amoeba
Phylum Apicomplexa
Cilia and Flagella are absent, characteristics is the set of organelles (apical complex or apical protein) at the anterior
Example: Monocystis
Phylum Ciliophora
A organelles with cilia as the locomotion
Example: Paramecium

Source: Lab manual and Lecture of Professor Blake Barron.